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Abstract— An accurate estimate of forces exerted by extreme sea 

waves on offshore structures is vital to assess potential risks to 

structural integrity. The present work describes a methodology 

to simulate multi-modal and multi-directional sea waves 

impacting on offshore structures. The waves are generated by 

moving the side boundaries of the fluid domain according to the 

sum of random Fourier modes, each with its own direction, 

amplitude and wave frequency. By carefully selecting the 

amplitudes and the frequencies, the ensemble of wave modes can 

be chosen to satisfy a standard sea wave spectrum. We simulate 

offshore structures as free rigid bodies composed of solid SPH-

like particles. Tension-legs are modelled as ideal springs that 

tether the platform to the sea bed. Elastic collisions between 

multiple objects are taken into account by an exchange of 

momentum directed along surface-normal vector of the least 

convex object at the point of contact. This new collision model 

does not require any a priori assumption on the shape of the rigid 

bodies. 

I. INTRODUCTION 

Studies of water waves with regular and permanent forms as a 

fluid dynamical phenomenon have a long history (Stokes, 

1847), (Lamb, 1932). The properties of ocean surface waves 

though, with their random properties and the complex 

mechanisms of their evolution, are quite different from those 

of regular water waves. Due to this difference the fundamental 

studies of ocean surface waves were much delayed. Modern 

studies of ocean surface waves started in the 1940s with the 

study by (Sverdrup & Munk, 1947). The most important point 

of their study was that a sea state can be characterized 

statistically by a wave spectrum and associated “significant 

waves”, i.e. an average wave height and average wave period. 

Extreme waves are defined as waves that have two times 

higher amplitude than surrounding waves (Liu, Zhang, & Yu, 

2011), i.e., much higher than the significant waves in the 

actual sea state. Reports of extreme waves have circulated for 

a long time, ever since intercontinental seafaring became 

common in the 16
th

 Century. For long, the existence of 

extreme waves was doubted but the existence of extreme 

waves was unambiguously confirmed on January 1
st
, 1995, 

when Statoil’s Draupner platform in the Norwegian North Sea 

recorded an extreme wave of 25.6 m height in an area 

with significant wave height of approximately 12 metres 

(Haver, 2004). 

A few research groups have performed SPH simulations of 

extreme wave hitting offshore structures in recent years. For 

instance, Dominguez [REF] simulated the impact of a solitary 

wave of elevation on a fixed platform in shallow water, and 

Rudman & Cleary [REF] modeled the arrival of a single 

extreme wave on a tension-leg platform. Despite giving an 

interesting qualitative picture, both studies do not capture 

some characteristics of real seas, notably the fact that a typical 

sea state consists of multiple wave modes of different 

frequencies and different directions. 

The present work describes a methodology to simulate multi-

modal and multi-directional sea waves impacting on offshore 

structures. The waves are generated by moving the side 

boundaries of the fluid domain according to the sum of 

random Fourier modes, each with its own direction, amplitude 

and wave frequency. By carefully selecting the amplitudes and 

the frequencies, the ensemble of wave modes can be chosen to 

satisfy a standard sea wave spectrum such as the JONSWAP 

or the Pierson-Moskowitz spectrum [REF]. 

In order to model the motion of offshore structures correctly, a 

model for the motion of rigid bodies is required, too. In 

section II, we will present the rigid-body equations, and we 

will also discuss a method to take elastic collisions between 

multiple objects into account. The rigid-body implementation 

in SPH is validated in a test case presented in section III. 

Results for the wave elevation in a realistic sea state are 

presented in section IV. Section V discusses the impact of an 

extreme wave on offshore structures. 

II. PHYSICAL-MATHEMATICAL MODEL 

A.  Fluid model in SPH 

We employ a standard implementation of the so-called weakly 

compressible SPH method (Liu & Liu, 2003). This 

formulation allows the density of the fluid to vary slightly in 

the simulation, even if the fluid flow in real-life is virtually 

incompressible. The pressure is related to the density through 

an equation-of-state. The numerical speed of sound must be 

chosen sufficiently large to avoid density fluctuations larger 

than 1%, but it should be as small as reasonably possible to 

avoid severe restrictions on the time step. 

The local density of each fluid particle is determined using the 

continuity density formulation (Monaghan, 1994) [REF]. The 
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equations-of-motion of each fluid particle consist of the 

standard terms for SPH simulations of fluid (Liu & Liu, 2003) 

[REF]: a pressure term, a gravity term and artificial viscosity. 

The equations are numerically stabilized using the standard 

artificial viscosity formulation (Liu & Liu, 2003) [REF]. In all 

simulations described in this paper, we have used a value of 

0.01 for the dimensionless artificial viscosity parameter AV. 

The force exerted by a boundary particle on a fluid particle is 

essentially the same as the force between two fluid particles, 

and consists of the pressure gradient and the viscous force. 

This is irrespective of whether the boundary particle is a 

“fixed boundary particle”, a “moving boundary particle” or a 

“floating object particle”.  

The mass of the boundary particle is chosen in correspondence 

with the average density of the fluid. The density of the 

boundary particles is allowed to vary in time. The pressure and 

density associated with the boundary particle are calculated 

from the same equations as the fluid particles. 

B. Wave generation by moving boundaries 

Our goal is to create a sea state that consists of Nmodes 
different wave modes with arbitrary wave amplitude, 
frequency, direction and phase: 

   



modesN

1i

iiii φtωcosAt,ζ xkx .  (1) 

where  denotes the free-surface elevation at position x at time 

t (here and henceforth, a bold letter denotes a 3D vector). Ai 

denotes the amplitude of the i-th wave mode, i is the 

frequency of the i-th wave mode, and i is the phase of the i-th 

wave mode. ki is the dominant wave number of the i-th wave 

mode. For each mode, the dominant wave number ki is related 

to the wave frequency by the dispersion relation (Lamb, 

1932): i
2
 = g ki tanh (ki d), where ki = |ki|. 

The simple summation of wave modes, as described in 

Equation (1), does not incorporate any effect that one mode 

may have on the motion of the others. Higher-order methods 

exist where the mutual interaction is taken into account, within 

the framework of potential flow theory (Mori & Yasuda, 

2002). For the sake of simplicity, we neglect those interactions 

here. They could be included in a future refinement of the 

method; there is no conceptual limitation that forces us to look 

at linear wave interactions here. 
The sea state above can be generated by a moving 

boundary, where each element of the boundary moves 
according to the following equations-of-motion:  

 



modesN

1i

iiB,0Mi

ii

iii
MB φtωcos

kχ

ωA
xk

k
u  , 

MB
MB

dt

d
u

x
  

 (2) 

where xMB,0 = xMB (t = 0). This is a generalization of 
Havelock’s theory to the case of Nmodes different wave modes, 

where i denotes the ratio between the wave height far 
downstream and the stroke of the wavemaker of the i-th wave 
mode. Havelock (1929) used potential flow theory to derive 

that i for a single progressive wave is equal to:  

  
  dk2d2ksinh

1d2kcosh2
χ

ii

i
 theoryi,




 .  (3) 

Ursell (1952) validated Havelock’s theory in a lab experiment, 
and found that the actual wave height is slightly lower than 
what is predicted by Eq. (3), see Fig. 1. An empirical fit 
through Ursell’s data is:  











2

dk
tanh2χ i

experimenti,
.  (4) 

This experimental fit is also in agreement with numerical 

simulations that we performed ourselves in SPH, for exactly 

the same cases as Ursell. Generally our simulation results are 

in good agreement with Ursell’s measurements. They slightly 

deviated from Havelock’s theory, especially for relatively 

small wave lengths. Therefore, we decide to employ Eq. (4) in 

the prescription of moving boundary particles in our SPH 

simulations of extreme waves. 

Havelock’s method is expected to work as long as the 

boundary is far away from the point of interest; Ursell 

calculated that a horizontal distance equal to 3 times the water 

depth is sufficient to dissipate any non-linear effects. In the 

three-dimensional simulations presented in this paper, there is 

the additional requirement than wave reflections with the 

boundary must be negligible. 

 

 

Figure 1.  The ratio i between the wave height and the stroke of a 
wave maker. The blue line denotes Havelock’s analytical solution assuming 

potential flow theory, Eq. (3). The actual experimental data from (Ursell, 

Dean, & Yu, 1952) are shown as blue stars. Our SPH results for the same 
cases as Ursell are indicated by green dots. The empirical fit through 

experimental data from Ursell, given in Eq. (4), is shown in red. 

The wave elevation profile given by Eq. (1) only describes a 

realistic sea state if all the constants are chosen with care. In 

particular, the following parameters need to be chosen for 

each wave mode: amplitude Ai, frequency I, wave number 

vector ki (both length and direction), and phase 
iφ . A realistic 

sea state can be modelled by a large number of wave modes, 

with Nmodes > 100 being common (Liu, Zhang, & Yu, 2011) 

[REF].  
The statistical amplitude distribution is usually described in 
terms of a wave frequency through a wave spectrum (Faltinsen, 
1990). Typical examples are the JONSWAP and the Pierson-
Moskowitz spectra. For example, the Pierson-Moskowitz 
spectrum has the following functional form:  
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where Speak denotes the maximum value of the wave spectrum 

and peak the wave frequency at which the spectrum is 

maximum. The dimension of the spectrum function S() is 

[m
2
 / (rad/s) = m

2
 s]; it thus describes the power spectrum of 

the free-surface elevation above the nominal water depth. The 

significant wave height (HS) is practically equal to four times 

the square root of the zeroth-order moment of the wave 

spectrum. 
The wave spectrum is a continuous probability density function 
that can be discretized by assigning one wave mode to one 

particular frequency (Liu, 2011). The wave frequencies i can 
for example be chosen on an equidistant grid in the range 

between min and max, where min and max are chosen such 

that S(min) and S(max) are virtually zero. The corresponding 
amplitudes of each wave mode then follow directly from the 
wave spectrum (Liu, Zhang, & Yu, 2011) [REF]:  

    1i1ii2
1

iii ωωωSΔωωSA   ,  (6) 

The length of the wave number vector, ki, is directly related to 

the wave frequency through the dispersion relation. The 

directionality of the wave vector ki can be obtained by 

randomly sampling the angle i with respect to the x-axis from 

a normal distribution with mean 0 and variance . 

In a totally random sea state, the phase is a random number 

with a uniform distribution between –  and . Occasionally, 

however, many of the independent wave modes may peak at 

one point in space at a certain moment in time. This gives rise 

to an extreme wave, sometimes called a ‘rogue wave’ or a 

‘freak wave’. 
In a simulation or an experiment, one could in principle wait 
for the rare event that the most important wave modes focus in 
the same point. However, this is an inefficient method, as it 
takes a lot of time, and also the freak wave that occurs does not 
necessarily occur at a location of interest. An extreme wave 
event can be generated more efficiently by judiciously 
choosing the phase of each wave mode (Swan & Latheef, 
2013). Thus, we can rewrite Eq. (1) for the elevation profile as:  

      



modesN

1i

ififii φ~t-tωcosAt,ζ xxkx , 

 (7) 

where 
iφ

~  is a modified phase, and xf and tf are the spatial 

coordinate and the time instant of the extreme wave event, 

respectively. Note that both i tf and 
fi xk  only provide a 

constant phase shift in the cosine. 

In order to generate an extreme wave, 
iφ

~  needs to be chosen 

within a restricted range close to 0 for sufficiently large 

portion of wave modes i. In the present study, we choose each 

iφ
~  as a random number, drawn from a uniform probability 

distribution between -/4 and /4. Thus, a high free-surface 

elevation can be expected at the focus point xf at time tf. 

C. Rigid body equations 

As a rigid body moves through space, it may translate and 
rotate. In the mathematical description of rigid body motion, it 
is convenient to work with two different reference frames: a 
world frame, which remains fixed in time, and an object frame 
which moves and rotates with the object. It is convenient to let 
the origin of the object frame coincide with the centre-of-mass 
of the rigid body at all times. Any coordinate in the object 

frame, , can be translated into world frame coordinates x as 
follows:  

 ξrx R .    (8) 

where r is the position of the centre-of-mass in the world 

frame, and [R] is the so-called rotation matrix (Meriam & 

Kraige, 1992). The rotation matrix is composed of the 

projections of the unit vectors e, e, e onto the world 

coordinate axes x, y and z. Any vector that is defined in the 

object frame can be expressed as a vector in the world frame 

by multiplying it with [R]. 
The displacement r and the velocity v of the centre-of-mass of 
a rigid body are given by:  

v
r


dt

d ,   F
v 1m

dt

d  .  (9) 

where F represents the total external force on the rigid body. 

In our simulations, the force F = Ff + Fg + Ft where Ff denotes 

the force from the fluid on the object, Fg is the gravitational 

force, and (in the case of a tension-leg platform) Ft is an 

additional spring force from each tension leg. 
In the object frame, the angular momentum vector M of a rigid 
body is equal to the vector-multiplication of the moment-of-

inertia tensor [I] and the angular velocity : M = [I] , where 

both [I] and  are defined in the object frame. In the world 
frame, however, the angular momentum vector L is the 
multiplication of [R] and M:  

    ωML IRR  .   (10) 

For rotating rigid bodies, [I] is constant in time, but [R] is not. 
The change of angular momentum in the world frame in time is 
equal to the external torque T applied. The external torque T 
can either be come from the fluid or (in the case of a tension-
leg platform) from the additional spring force from each 
tension leg. The time change of the angular momentum can be 
derived from Eq. (10) as:  

      
dt

d
IRIR

dt

d ω
ωTL  ,  (11) 

where we have used that the evolution of the rotation matrix 
[R] in the course of time is (Bourg & Bywalec,2013):  

      
























0ωω

ω0ω

ωω0

RΩRR
dt

d

ξη

ξζ

ηζ

,  (12) 

Rewriting Eq. (11) gives an expression for the angular 

acceleration d/dt:  
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        ωT
ω

IRRI
dt

d


 11 .  (13) 

For an accurate solution, the variables r, v,  and [R] need to 

be solved simultaneously in the course of time, since their 

evolution equations are coupled. In addition, the force and 

torque on the object, F and T, need to be evaluated at each 

instant of time. 

In our implementation, rigid bodies are composed of SPH 

particles, too. The force from the fluid on the floating rigid 

body is calculated from Newton’s Third Law (“Action = – 

Reaction”): it is exactly opposite to the force exerted by the 

boundary particles in the floating object on the fluid. The 

torque on the rigid body is calculated from the sum of the 

individual particle-particle interactions as well. 
The calculation routine for the velocity of the center-of-mass of 
the floating rigid body is on a simple first-order Euler 
discretization of the acceleration:  

  nn1n1n ttm  
Fvv .  (14) 

with F evaluated based on the particle positions at the previous 

time step. Note that the time step t may be variable. The 
displacement is calculated from a trapezium rule, and is 
second-order accurate:  

  nn1n

2
1n1n t 

vvrr .  (15) 

Also the angular velocity in the object frame is calculated using 
an explicit Euler scheme: 

         n11nn1n IRRIΔt ωTωω 
 , (16) 

where the variables on the right-hand-side, [R], T, [] and , 
are all taken from the previous time step, n. The evolution 
equation of the rotation matrix is determined after the 
calculation of the angular velocity, with the time-step averaged 

value of 
n,av

 = ( 
n+1

 +
n
 )/2:  

        avn,nnn*n
ΩRΔtRR  ,  (17) 

where n* is a fictitious future time step; [R]
n*

 is an estimate of 

the rotation matrix at the new time step. In a second step, the 

matrix [R]
n*

 is subject to Gram-Schmidt orthonormalization, 

with [R]
n+1

 as output. This procedure ensures that [R]
n+1

 is a 

pure rotation matrix, i.e. it does not cause any translation of 

the vector it is multiplied with. 
Finally, the position of each particle “j” inside the rigid body is 
specified by:  

  1n

CoMj,

1n1n

j R   rξx ,  (18) 

and its velocity by:  

   CoMj,

1n1n1n1n

j R ξωvv   ,  (19) 

where j,CoM denotes the separation vector, in the object frame, 

between the particle “j” and the object’s centre-of-mass. 

D. Collision model 

When two solid rigid bodies (labelled ‘1’ and ‘2’) come in 

contact with each other, they will collide. In this section, we 

present the equations that describe an elastic collision between 

two rigid bodies. The collision model is based on the 

conservation of linear momentum, angular momentum and 

energy, following the approach described by (Hakenberg, 

2008). The point of collision, in world coordinates, is denoted 

by rc. The collision detection algorithm is incorporated in the 

nearest-neighbor search algorithm which is also used to detect 

particle pairs in the SPH simulation. 
During the collision, a force applies for a short period of time 
that pushes the objects away from each other. Without making 
any a priori assumption on its magnitude or direction, we 
denote this force by Fcoll. Typically, near-elastic collisions take 
place over a short period of time compared to the time scales of 
interest of a problem. The total exchange of forces during this 
short interval can be captured by the collision impulse, Icoll, 
which is equal to: 







t

t

collcoll
-

dtFI .  (20) 

Here t
-
 denotes a time just before the collision and t

+
 the time 

just after the collision. Without loss of generality, we may 

introduce  as the collision impulse magnitude and n as a unit 

vector indicating the direction along which the forces are 

exchanged: Icoll =  n. 
Integration in time (between t

-
 and t

+
) of the momentum 

equation of each object gives an expression for the velocity of 
each object before the collision, vi, and after the collision, v’i:  

nvv
1

11
m

λ
'  ; nvv

2

22
m

λ
'  . 

 (21) 

Similarly, integration in time of the angular momentum 
equation of each object gives an expression for the angular 

velocity of object i after the collision, ’i, in terms of the 

angular velocity before the collision, i:  

111 λ' qωω  ; 
222 λ' qωω   

 (22) 

where we have introduced the shorthand:  

      nrrq 


ic

1

i

1

ii RI .  (23) 

If we assume the collision to be perfectly elastic, the value of  
can be directly derived from the conservation of energy. The 
total energy in the system is composed of kinetic energy and 
rotational energy of the two objects, and energy conservation 

gives a second-order polynomial in , which has two solutions. 

One solution is  = 0, i.e. ‘no collision’; the other solution is 
the one that is relevant for an elastic collision:  

   
    22

T

211

T

1

1-

2

1-

1

22

T

211

T

121

IImm

II
2λ

qqqq

ωqωqnvnv




 . (24) 
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This expression is exact for any elastic collision, regardless of 

the precise geometry of the objects, or the magnitude or 

direction of the collision force Fcoll. 

The only remaining free parameter is the unit vector n. It 

denotes the direction in which the momentum is exchanged 

between two colliding objects. In a typical collision between 

two arbitrarily shaped objects, one object will have a wedged 

shape at rc whereas the other object will have a flat surface at 

rc. In the present study, we choose n as the surface-normal 

vector of the ‘flattest surface’. Thus, all the momentum 

between the two objects is exchanged in the direction of n. 

The surface-normal vectors at the point of collision are 

calculated from the positions of nearby particles in the rigid 

bodies; the ‘flattest surface’ belongs to the object with the 

highest number of particles near rc. 

III. VALIDATION FOR RIGID BODY MOTION 

We validate our implementation of the rigid body equations 
against an experiment by Kraskowski (2010), who used it for 
the validation of a self-developed volume-of-fluid method. 
Kraskowski’s experiment is interesting in that it involves a full 
three-dimensional rotation of the rigid body. 

 
Figure 2.  Snapshot of the floating object at six instants of time. Left: 

SPH simulation. Right: Experiment by Kraskowski. The time is measured 
after the impact of the floating object on the water surface. The fluid is 

coloured by velocity magnitude (dark red = 1 m/s, dark blue = 0 m/s). 

The experimental setup is as follows. A 150 mm wide cube 
is freely hanging on a wire above a basin of water, with the 
lowest corner 5 cm above the water level. The water basin is 
1.3 m long, 1.0 m wide and 0.25 m deep. The experiment is 
carried out in a lab at room temperature. The object is not made 
of a uniform material, but it has a geometrically eccentric 
centre-of-mass, 7 mm towards the top face. Further details on 
the object can be found in Kraskowski (2010). 

At the start of the experiment, the wire is cut and the object 
is allowed to fall into the basin. Due to the eccentricity of the 
centre-of-mass, the object starts to roll in the water. A high-
speed camera is used to register the motion and the orientation 
of the object at many instants of time. 

We simulated Kraskowski’s experiment with SPH, with 
particle size equal to 10 mm. Such a resolution is similar to one 
used by Ulrich (2013) who considered the same case. 

Snapshots from our SPH simulation are shown in Figure 2, 

where they are compared with pictures from experiment 

reported by Kraskowski (2010). Our simulation appears to be 

in very good agreement with the experiment, for what the 

position and orientation of the object are concerned. 

IV. SIMULATION OF EXTREME WAVE 

Now we simulate an extreme wave with SPH. The underlying 

sea state consists of 100 modes of different frequency and 

direction. First, in section IV, we will analyse the sea state 

itself; our objective is to accurately reproduce the New Year 

Wave event. Then, in section V, we will simulate the impact 

of an extreme wave on a tension-leg platform surrounded by 

two ships. 

A. Geometry and setup 

The fluid basin is 50 m deep and stretches over a longitudinal 

distance of 800 m, with a transverse width of 150 m. The 

beach, which is intended to prevent reflection of waves, starts 

at 600 m from the left wall of the domain and has an angle of 

14° with the horizontal. In the transverse direction, the fluid is 

contained by solid side walls. The numerical speed of sound in 

the fluid is chosen as 300 m/s, and the particle size in the 

simulations presented in this section is 2.25 m. 

 

 
Figure 3.  Wave spectrum for New Year Wave (Liu, 2010), and the 

model wave spectrum used in our SPH simulations. 

Waves are generated through the displacement of a part of the 

vertical side walls by a prescribed motion, in order to generate 

an extreme wave at xf = 390 m after tf = 60 s. The “moving 

boundary” particles that are displaced with a prescribed 

motion are plotted as dark grey dots in the ‘top view’ snapshot 

of Figure 6. In principle, each of these particles should follow 

the equation of motion for moving boundary particles, 

Equation (2), in order to generate the free-surface elevation 

profile in Equation (1). However, one adjustment needs to be 

made: if the boundary particles were freely allowed to follow 

Equation (2), holes would appear in the side wall between the 

fixed and the moving boundary particles, leading to a leaking 

of fluid. This is obviously an undesired effect. In order to 

maintain a continuous boundary without gaps, a transition 

zone is identified (see Figure 4) where a spatial smoothing is 

applied. The spatial smoothing factor is of the following form: 



10
th

 international SPHERIC workshop Parma, Italy, June 16-18, 2015 

 

 



































2

1

L

xx
6.7tanh1

x

limit

2
1

xf . (24) 

where xlimit = 390 m here, and Lx is a smoothing length that we 

choose equal to 100 m in our simulations. 

Similarly, it is not possible in SPH to start moving the 

boundaries vigorously at time t = 0 s. The reason is that the 

particles first need to ‘settle’; an initial disruption may cause 

numerical instabilities. Therefore we apply smoothing in time:  
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where t* is some smoothing time scale. In the present 

simulations we choose t* equal to 30 s. 

 
Figure 4.  Free-surface profiles from SPH simulation of an extreme 

wave event. A schematic top view of the domain is drawn in the middle: 

yellow lines denote side walls composed of “moving boundary” particles, blue 

lines indicate fixed side walls, and brown lines are the transition region given 
by Eq. (25). The focal point of the extreme wave is depicted by the yellow 

cross. A comparison is made with the potential flow estimate from Equation 

(7), at eight different positions in the domain. The dots and the connecting 
lines are coloured by the cross-correlation of the SPH simulation data and the 

potential flow estimate in the interval 60 s < time < 140 s. 

Equation (2) for the velocity of any “moving boundary” 

particle “j” now becomes:  

    



modesN

1i

ififMB,0j,i

ii

iii
txMBj, φ~t-tωcos

kχ

ωA
xxk

k
u ff .

 (24) 

For each wave mode “i”, the amplitude Ai, the wave number 

ki, the frequency i, the phase iφ
~

 and the direction i can be 

chosen based on any target wave spectrum, as we described in 

section II. Here, we use a Pierson-Moskowitz spectrum 

(Stewart, 2005)) with a maximum peak intensity of 30 m
2
 s, at 

the peak frequency of 0.42 rad/s. This corresponds to the 

spectrum measured at the Draupner platform during the 

extreme wave event (Liu, Zhang, & Yu, 2011) [REF], see 

Figure 3. The spectrum is modelled by 100 independent 

modes, which are subject to some degree of randomness: the 

direction of each wave mode is taken from a Gaussian 

distribution with variance of 15 degrees and the phase of each 

wave mode is randomly picked from a uniform distribution 

between – /4 and /4. The wave modes combine to form an 

extreme wave at a given focus point and focus time. 

B. Simulation of extreme wave 

The result for the free-surface elevation from the SPH 

simulation is shown in Figure 4, for eight different 

measurement points in the domain. The results are compared 

with the expected elevation from potential flow theory for the 

same case (Equation (7)), with identical data for the 

amplitudes, phases and wave numbers of each wave mode. 

The data points are colored by the cross-correlation (Pearson, 

1895) [REF] between the SPH simulation result and the 

potential flow estimate. 

In all measurement locations shown in Figure 4, the wave 

peaks occur at approximately the same time, and the wave 

heights are generally in reasonable agreement. The cross-

correlations between the SPH simulation and the potential 

flow solution are generally above 70%. 

The lowest cross-correlation of 45% occurs at (x, y) = (390 m, 

0 m); the main reason is that the height of the extreme wave 

simulated by SPH is somewhat lower than what is predicted 

by potential flow theory (18 m vs. 23 m). The difference can 

be attributed to some excessive numerical diffusion in the SPH 

simulation on the one hand, and to the limited applicability of 

linear potential flow theory to describe high waves and 

breaking waves on the other hand. 

Nevertheless, the results demonstrate that it is possible to 

model an extreme wave in an SPH simulation, more or less at 

the designated ‘focus point’ and ‘focus time’. In fact, the 

highest peak in the water elevation in the SPH simulations 

occurs at x = 350 m at t = 55 seconds, which is not very 

different from the intended focus point and time (xf, tf) = (x = 

390 m, y = 0 m; t = 60 s). The peak wave arrives at xf a few 

seconds earlier than tf because large waves travel faster than 

small waves. This effect, which is related to the non-linearity 

of surface waves (Stokes, 1847), is not taken into account in 

the first-order potential flow theory, but it is implicitly taken 

into account in the SPH simulation. 

The wave height measured at x = xf is shown in Figure 5; the 

time axis is shifted, so that the peak of the extreme wave 

occurs at t – tpeak = 0 s. There is good agreement with the 

measured extreme wave, of which the elevation data were 

given in (Liu, Zhang, & Yu, 2011). 
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Figure 5.  SPH prediction for the wave profile, as measured at the 

location where the front of the platform is located initially. The target 
elevation, from Draupner’s ‘New Year Wave’ data, is shown as well. 

No particular tuning parameters were used to obtain this 

result.  Apart from the wave spectrum that was taken equal to 

the measured Draupner spectrum, the only input parameters to 

the flow model were:  

 The number of wave modes: here we took it as 100, to 
cover the whole range of wave frequencies. 

 The phases of wave modes: chosen randomly between 

–/4 and +/4, to focus the wave modes in order to 
generate the extreme wave. 

 The standard deviation of the directionality, : chosen 
as 15 degrees, which is a reasonable value for a typical 
sea state (Ewans & Jonathan, 2008) [REF]. 

The position and time of focusing is specified through the 

choice of the phases of the individual wave components. 

Nothing particular was specified to model what happens 

before or after the extreme wave. Therefore, the SPH 

simulation result in Figure 5 is not necessarily in agreement 

with the measured data a long time before or after the peak 

event. Nevertheless, the general statistics are reproduced well, 

especially the troughs before and after the extreme wave. 

According to (Liu, Zhang, & Yu, 2011) [REF], any extreme 

wave can be characterised by four dimensionless parameters:  

 The height of the extreme wave (peak + trough) 

compared to the significant wave height,  = HEW / Hs. 

 The height of the extreme wave compared to the 

previous wave peak, 1 = HEW / HEW-1. 

 The height of the extreme wave compared to the next 

wave peak, 1 = HEW / HEW+1. 

 The height of the extreme wave compared to its 

amplitude above the nominal sea level,  = HEW / 

EW+1. 

According to the measurement data, these parameters are for 

the New Year Wave:  = 2.15, 1 = 2.25, 2 = 2.5 and  = 

0.72 (Liu, Zhang, & Yu, 2011). Our SPH simulation predicts 

the following values:  = 2.08 (–3%), 1 = 2.78 (+24%), 2 = 

2.12 (–15%) and  = 0.72 (+0%). Thus, there seems to be 

good agreement for these parameters that characterize an 

extreme wave. 

V. EXTREME WAVE ON OFFSHORE STRUCTURES 

As a proof-of-concept, we will show a real-life application 
of the new collision model. We will study the effect of an 
extreme sea wave hitting a tension-leg platform surrounded by 
two ships. The method to generate the extreme wave is 
identical to what was presented in section 4. The front of the 
platform is initially located at the focusing point of the extreme 
wave. 

A. Geometry description 

Three rigid bodies are present in the simulation:  

 A tension-leg platform (‘Object 1’). 

 One ship with the bow in the direction of the extreme 
wave (‘Object 2’). 

 One ship with the bow in the direction of the extreme 
wave (‘Object 3’). 

 

Figure 6.  Snapshots of SPH simulation of an extreme wave hitting a 

tension-leg platform surrounded by two ships. The “moving boundary” 

particles are shown in grey in the top view. The other, fixed, boundary 

particles in the side walls are not shown here, to allow a clear view on the 
offshore structures. Top and bottom right: fluid particles are coloured by 

velocity magnitude. Bottom left: fluid particles coloured by density. 

The SPH model of the tension-leg platform consists of four 
vertical cylinders that, in real life, are mostly filled with air and 
keep the platform afloat. The cylinders are connected by 
pontoons. The top deck is modelled by a thin layer of particles. 
The platform has a mass of 4 x 10

7
 kg, and a surface area of 72 

m x 72 m. The centre-of-mass is located at x1 = [ 426 m, 0, 9 m 
]

T
. The platform is tied to the sea bed with eight tension legs, 

each of which is modelled as a perfect spring with a spring 
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constant 4 x 10

7
 N/m and a nominal length of 500 m. The 

moments-of-inertia are: I = 3.7 x 10
10

 kg m
2
, I = 3.5 x 10

10
 

kg m
2
, I = 3.3 x 10

10
 kg m

2
. 

The two ships are modelled in an identical way in the SPH 
simulation. Both are assumed to have a length of 60 m and a 
width of 16 m. The mass of each ship is 4.3 x 10

6
 kg. The 

moments of inertia along the principal axes are: I = 2.2 x 10
9
 

kg m
2
, I = 4.3 x 10

8
 kg m

2
, I = 2.2 x 10

9
 kg m

2
, where  is 

measured along the length of the ship,  runs along the width 

of the ships, and  is the vertical coordinate. The centre-of-
mass is located half-way the length, at 30 m behind the bow, at 
a height of 1 m below the nominal sea level. The two ships 
have a different orientation: one ship’s bow (‘object 3’) is 
directed perpendicular to the incident wave, whereas the other 
ship’s bow (‘object 2’) is directed parallel to the incident wave. 

B. Simulation results 

Snapshots of the particle positions after 56 s of simulation 

time, when the extreme wave arrives at the platform, are 

shown in Figure 6.  These snapshots give a qualitative picture 

of the resulting motion of the three floating objects. It can be 

observed that the three objects are all brought into motion 

around the time the extreme wave passes. The ships, which 

have a lower mass and moment-of-inertia compared to the 

platform, are given the highest rotation and displacement by 

the passing wave. For example, from the side view it is clear 

that the transverse ship (‘Object 2’) is subject to a 

considerable roll motion. The position and the orientation of 

the platform remain relatively steady, thanks to the tension 

legs that are tied to the sea bed. 

A collision take place between Object 2 and the platform at 

approximately 57 s, and another collision between Object 3 

and the platform takes place around 59 s. The collisions ensure 

that the three objects do not penetrate each other. The extreme 

wave reaches the beach downstream of the platform at 

approximately 80 seconds. In the period afterwards, the 

tension-leg platform is gradually brought back to its 

equilibrium position, while only small-amplitude waves pass 

the three objects. These small waves do not have the energy to 

drive the three objects apart, so they remain close together for 

the remainder of the simulation. 

Quantitative information can be extracted from the 

displacement data of the floating objects. In Figure 7, we show 

the vertical and horizontal position (the x-coordinate, to be 

precise) of the centre-of-mass of each of the objects. Object 1 

is the tension leg platform, whose centre-of-mass is initially 

located at (x, z) = (426 m, 9 m). It moves some 37 m to the 

right in the course of the simulation, and some 3 m in the 

downwards vertical direction; the tension legs pull the 

platform down into the water as it moves away from its 

equilibrium position. The centre-of-mass of the transverse ship 

‘Object 2’, initially located at (x, z) = (350 m, –1 m), is 

displaced within a range of 60 m in the horizontal direction 

and 30 m in the vertical direction. Thus, the extreme wave 

clearly has a much greater effect on the ship than on the 

platform, as could be expected. Also the other ship, ‘Object 3’, 

moves by more than 75 m in the course of the simulation, 

although its vertical motion is limited to a band of 

approximately 20 m. 
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Figure 7.  Result from the SPH simulation with a tension-leg 

platform surrounded by two ships (coarse resolution): trajectories of the 
centre-of-mass of the three objects in the course of time. The distance between 

two dots represents a time instant of 0.4 s. 

VI. CONCLUSION 

We have presented a new method to generate multi-modal and 

multi-directional sea waves within the framework of SPH. The 

new method has been used to generate an extreme wave 

reminiscent of the New Year Wave that was recorded at the 

Draupner platform in 1995. As a proof-of-concept, the method 

has been used to simulate the motion of a tension-leg platform 

surrounded by two ships. The latter simulation also includes 

new models for rigid-body motion and elastic collisions, both 

of which have been described in this paper as well. 
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